

Emerging Geospatial Innovations Enabling Global Capability for Climate and Crisis Response

Second United Nations World Geospatial Information Congress

Budhendra Bhaduri (@budhubhaduri)

Hyderabad, India. October 12, 2022

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

As a U.S. Department of Energy (DOE) national lab, ORNL is part of a network for discovery and innovation

ORNL facts and figures

High resolution settlement and population data with GeoAl and HPC

LandScan Global Population Distribution Data Sets

Mapping human settlements from high resolution images

Addis Ababa, Ethiopia

Yaounde, Cameroon

Reducing the scope of the population mapping problem

Separating buildings from non-building area:

	Country	Total area (km²)	Built-up area (km²)	% built-up
	Mali	~1,240,000	247.7	0.02%
古ている	Venezuela	~915,000	1,163.5	0.13%

Approximately 99.98% of Mali and 99.87% of Venezuela are non-building

Mapping buildings means population models have a more manageable task - they need only explain the variation in population density within the small fraction of land area that is inhabited

United States: high resolution buildings map

CAK RIDGE Automated Building Mapping at Scale

Technology Description

 Automated high-resolution building extraction based on advanced deep learning applications

HPC Utilization

- Scaled to 12 Summit nodes (96 total GPUs)
- Model training with 110,000 World View labelled images (covering 9,314 km² globally) in less than 45 minutes

Impact

- Average processing time for a half-meter 4-band image averaging 35,000 x 35,000 pixels is 3 minutes using a single V100 GPU.
- For the country of Iraq:
 - 4 minutes to extract all buildings using 3,206 GPUs on Summit
 - 8 hours to extract all buildings using 24 DGX1 GPUs plus 16 DGX2 GPUs

- Overlay pre-event building footprints (in blue), we compare our results to the FEMA damage assessment database
- 88% of destroyed/major damaged building (3722 out of 4225)are identified through this rapid assessment

CAK RIDGE National Laboratory

Baga, Nigeria (February 2015)

Automated Count: 9601

Automated Count: 151

Mariupol damage assessment

3 **CAK RIDGE** National Laboratory

September 2019

March 2022

Damages: Significant apartments and residential structures show damages in March 2022 imagery

High resolution elevation models at global scale

High resolution digital surface model

Active sensing

Radar (e.g., Shuttle Radar Topography Mission)

• Lidar (light detection and ranging)

Stereo imagery

- Higher resolution (900x vs. state-of-practice)
- No additional hardware needed
- Fortuitous no tasking needed
- Passive not detectable
- Low SWAP large standoff distance
- Scalable to the world

CAK RIDGE 3D Digital Surface Model Generation

Technology Description

- Automated generation of high-resolution digital surface models (DSM) from optical stereo imagery
- Operational GOTS (govt off the shelf) capability

HPC Utilization

- Implemented best-in-class algorithm in stereo known as semi-global matching (SGM)
- Accelerated SGM for GPU HPC platforms

Impact

- Ability to process roughly 200,000 km² of WorldView-3quality per week
- High resolution DSMs serve as foundational elements for many humanitarian and disaster response applications

GeoAl/ML Deployment at the Edge

GeoAl at the Edge: Hurricane Damage Assessment

 Utilizing UAS to process imagery onboard, find utility poles and assess their condition (up or down), and reports back over constrained communications environments

Hurricane Ida: machine learning detection/classification on the edge

Small Satellite Ground Station (GS) Infrastructure for Climate and Crisis Response

- Create an interconnected, robust platform for data collection, transmission, analysis, and edge processing for a wide range of science applications
- Develop a high-performance computing and AI/ML test bed for use on/with space-based platforms
- Lower the bar to advance technology for industry, academia, and government
- Phase I partnerships with
 - SAR
 - Hyperspectral

This Photo by Unknown Author is licensed under <u>CC BY-SA-NC</u>

Federated Cyberinfrastructure: HPC to Edge Computing

- Create access to best in class, geographically distributed resources
 - Data

CAK RIDGE

National Laboratory

21

- Scalable computation
- Analysis and visualization
- Platform for data integration and knowledge dissemination
- Enables on time and on demand information and knowledge delivery, particularly for time critical mission support

Interactive and Interoperable Visualization

Development of High Performance, Scalable Simulations

Analysis Models and Tools Development

Knowledgebase Creation

Dynamic Collection, Integration, Management and Dissemination of Disparate Data Resources

Discussion

